miR-24-3p Suppresses Malignant Behavior of Lacrimal Adenoid Cystic Carcinoma Cells by Targeting PRKCQ to Regulate p38/PI3K Pathway

This work was supported by the National Natural Science Foundation of China (No. 82070306) and the Natural Science Foundation of Tianjin (Nos. 19JCQNJC10500 and 12JCJQJC108200).
This work was supported by the National Natural Science Foundation of China (Nos. 91829302; 81572790, 31270302). This work was partially supported by the National Natural Science Foundation of China (No: 91929302, 91274326, 31871573, 81872790, 91727676, 31270381, 81572790) and the Natural Science Foundation of Tianjin (17JCYBJC35100, 19JCYBJC18100). This work was supported by the Key Laboratory of Immunologic Microenvironment and Disease (Tianjin Medical University, Ministry of Education [No: 201810040]).

This work was supported by the National Natural Science Foundation of China (No: 91629302; 81572790; 31270302, 81370381, 91274326, 31270381, 91727676, 31871573, 81572790, 91727676, 31270381, 81572790), the National Natural Science Foundation of China (grant numbers 81830094, 81602410, 81601763; 81572790, 91629302, 31270381, 81370381), and the National Science Foundation of Tianjin (grant numbers 17JCYBJC35100, 12JCYBJC35100, 16JCYBJC35100). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 31270302, 91274326, 31371573, and the National Science Foundation of Tianjin (12JCYBJC35100). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 91830094, 81602410, 31270302, 81370381, 91629302, 81572790). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790; 12JCYBJC35100). This work was partially supported by the National Natural Science Foundation of China (Nos: 91629302; 81272018, 91871477, 31871573, and the Natural Science Foundation of Tianjin (12JCYBJC35100, 19JCYBJC35100, 16JCYBJC35100). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81272018, 91871477, 31871573, and the Natural Science Foundation of Tianjin (12JCYBJC35100). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 31270302, 91274326, 31371573, and the Natural Science Foundation of Tianjin (12JCYBJC35100). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 91830094, 81602410, 31270302, 81370381, 91629302, 81572790). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 91274326, 31270302, 81371573, and the Natural Science Foundation of Tianjin (12JCYBJC35100). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 91274326, 31270302, 81371573, and the Natural Science Foundation of Tianjin (12JCYBJC35100, 12JCYBJC35100). This work was partially supported by the National Natural Science Foundation of China (Nos: 91629302; 81272018, 31371573, and the Natural Science Foundation of Tianjin (12JCYBJC35100). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 91871477, 31871573, and the Natural Science Foundation of Tianjin (12JCYBJC35100). This work was partially supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 91871477, 31871573, and the Natural Science Foundation of Tianjin (12JCYBJC35100). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 91871477, 31871573, and the Natural Science Foundation of Tianjin (12JCYBJC35100). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 91871477, 31871573, and the Natural Science Foundation of Tianjin (12JCYBJC35100). This work was supported by the National Natural Science Foundation of China (Nos: 91629302; 81572790, 91871477, 31871573, and the Natural Science Foundation of Tianjin (12JCYBJC35100).